
Number Crunching

Felix Domke <tmbinc@elitedvb.net>
27C3

Distributed
FPGA

For The Masses



fpga number crunching for the masses

 Who still crunches numbers these days? 
Breaking Keys?

 Hasn’t everyone moved to 128 bit 
crypto yet?

 Turns out: Plenty of stuff still unsolved!



fpga number crunching for the masses

 DES is the classic example for brute 
force

 56 bits keyspace

 Synthetic problems as well:

 NQueens, OGR, ...

 But let’s focus on a real-world example.



fpga number crunching for the masses



fpga number crunching for the masses



fpga number crunching for the masses

 Triforce Arcade Console

 Games have been dumped, emulated...

 But still: one unsolved mystery!



fpga number crunching for the masses

0000000: ca f8 6d 9b c9 82 0a e8 42 39 0c c6 4a 14 82 7f
0000010: 0c d8 2d b5 13 a8 af 59 06 de 6f f3 56 23 73 59
0000020: 06 de 6f f3 56 23 73 59 06 de 6f f3 56 23 73 59
0000030: 06 de 6f f3 56 23 73 59 06 de 6f f3 56 23 73 59
0000040: 06 de 6f f3 56 23 73 59 06 de 6f f3 56 23 73 59
0000050: 06 de 6f f3 56 23 73 59 06 de 6f f3 56 23 73 59
0000060: 06 de 6f f3 56 23 73 59 06 de 6f f3 56 23 73 59
0000070: 06 de 6f f3 56 23 73 59 06 de 6f f3 56 23 73 59
0000080: 06 de 6f f3 56 23 73 59 06 de 6f f3 56 23 73 59
0000090: 5f e1 63 54 fe 5e 29 a1 06 de 6f f3 56 23 73 59
00000a0: 0f 1e e4 12 53 af d5 30 06 de 6f f3 56 23 73 59
00000b0: 65 4a 06 d6 59 5a b8 16 06 de 6f f3 56 23 73 59
00000c0: a8 54 24 87 96 2a 51 f7 06 de 6f f3 56 23 73 59
00000d0: 1c fd b0 54 6f 0f 30 f5 06 de 6f f3 56 23 73 59
00000e0: 38 d4 f5 2a 76 7e 38 5d 06 de 6f f3 56 23 73 59
00000f0: 10 9f 99 d5 e1 4b 4a b1 06 de 6f f3 56 23 73 59
0000100: 93 1c f9 0f 47 48 cc cb 06 de 6f f3 56 23 73 59
...

xxd -g1 < FIRMWARE.ASIC



fpga number crunching for the masses

 Hey, repeating 8-byte blocks!

 Could indicate a non-chaining 8b 
block cipher.

 We know that games use DES 
encryption.

 So firmware might use the same?



fpga number crunching for the masses

...
b37b715f960d0969 6
132c1f06dba18bcd 7
f7d005d50bfd9843 10
bb7e6b52bc53bb46 10
eeaa44290bf2aebb 11
9bfdf2b8e963d9f5 11
0d3d6820f74fd4d5 180
06de6ff356237359 191

Histogram of 8 byte blocks:



fpga number crunching for the masses

 Most occuring plaintexts are usually all-
zero or all-FF. We don’t know which one 
is which, and call them C1 and C2.

 Triforce games encryption bytereverses 
ciphertexts - so these might be reversed 
as well.



fpga number crunching for the masses

 DES “complementation property”:

 “Inverted plaintext and key yields 
inverted ciphertext”

 If we search for ~C(~0), we might find 
~k earlier than k.

 Saves us one bit (half the time)!



fpga number crunching for the masses

 To formulate the goal:

 We’re looking for a key that encrypts 
00 00 00 00 00 00 00 00 into either of:

0d3d6820f74fd4d5 C1
06de6ff356237359 C2
d5d44ff720683d0d C1[::-1]
59732356f36fde06 C2[::-1]
f2c297df08b02b2a ~C1
f921900ca9dc8ca6 ~C2
2a2bb008df97c2f2 ~C1[::-1]
a68cdca90c9021f9 ~C2[::-1]



fpga number crunching for the masses

 Block Cipher based on 
Feistel Scheme

 16 rounds

 Each round uses 8 6-bit 
lookups (“S-Boxes”)

DES Blockcipher



fpga number crunching for the masses

 Block Cipher based on 
Feistel Scheme

 16 rounds

 Each round uses 8 6-bit 
lookups (“S-Boxes”)

DES Blockcipher



fpga number crunching for the masses

 Main work are S-Boxes

 For ALU-based architectures, bitslicing 
is the way to go

 On a traditional Intel CPU: ~64MKey/s/
core, or 384 MKeys/s per high-end 
machine

(based on Intel X5460 3.16GHz “john” crypt(3) benchmark result from http://openwall.info/wiki/john/
benchmarks)

http://openwall.info/wiki/john/benchmarks
http://openwall.info/wiki/john/benchmarks
http://openwall.info/wiki/john/benchmarks
http://openwall.info/wiki/john/benchmarks


fpga number crunching for the masses

6 years [s]

 384 MKeys/s are ~28.5 bits in 1s.

 A day has ~2^16.4 seconds.

 That’s 28.5+16.4=44.9 bits for a day.

 That’s 2^11.1 days, or 6 years. Uh.

 I want my key in a week.

 So I need 313 machines.

Keyspace

56 0

384 MKeys (1s)

28

week [s]313x



fpga number crunching for the masses

 On Cell’s SPU, an S-Box can be 
evaluated in 40 instructions on average 
for 128 bit in parallel.

 That’s equivalent to ~64 cycles per key 
guess, or 50 MKeys/s @ 3.2GHz.

 That’s 300 MKeys/s per PS3 (~28.1 bits 
in 1s).



fpga number crunching for the masses

 GPU are FAAAST!

 But nobody uses them for DES cracking, 
so no good benchmarks

 Estimated to be ~10x as a single CPU 
core

 That’d be 640MKeys/s, or 29.2 bits in 1s.



fpga number crunching for the masses

Device bits/
(s*node) $/node nodes*weeks $/Key/Week

PC 28.5 500 313 ~150k

PS3 28.1 300 310 ~93k (+Hack)

GPU 29.2 300 150 ~45k

FPGA



fpga number crunching for the masses

 Two choices: Pipelined (unrolled) design 
vs. space-optimized design.

 Pipelined design gives a result each 
cycle, vs. every 16 cycles, but is about 
16 times as big.

 Actually, non-pipelined design is less 
efficient.



fpgadistributed number crunching for the masses

 We can fit about 1-10 DES pipelined 
designs in an FPGA (depending on 
FPGA size)

 We can run them at about 100-200 
MHz

 That gives 100-2000 MKeys/s, or 
26.5-30.9 bits in 1s.

 One week with 60 of those big ones, or 
1200 of the tiny ones.



fpgadistributed number crunching for the masses

Keyspace

56 0

Rate (High-End PC)

28

second→week16x256x

25800x

second→year

Rate (FPGA)

second→day



fpgadistributed number crunching for the masses

 Copacobana: Cost-Optimized Parallel 
Code Breaker

 12.8 days to walk keyspace

 120 Xilinx Spartan3-1000

 $35 @120 pcs.: $4200 in FPGAs alone!

 That’s cool, but...



fpgadistributed number crunching for the masses

 Copacobana: Cost-Optimized Parallel 
Code Breaker

 12.8 days to walk keyspace

 120 Xilinx Spartan3-1000

 $35 @120 pcs.: $4200 in FPGAs alone!

 That’s cool, but...



fpgadistributed number crunching for the masses

 $4200+ for the key?

 My goal was $1000 max.



fpgadistributed number crunching for the masses

eBay FTW!

 Search for “FPGA” and “for chip 
recovery”

 Usually no documentation or decent 
pictures

 Kind of hit-or-miss.



fpgadistributed number crunching for the masses

eBay FTW!



fpgadistributed number crunching for the masses

 Xilinx Virtex 2 Pro

 XC2VP50 List Price:

 We paid $50 for 3.

 Ok, it’s an EOL’ed part.



fpgadistributed number crunching for the masses

 Remaining stock (~50) of these boards 
are in “good hands”

 Plan is to bring them up, make people 
use them.



fpgadistributed number crunching for the masses

 1. Find Power.

 2. Find JTAG.

 3. Find clocks.

 4. Profit.



fpgadistributed number crunching for the masses



fpgadistributed number crunching for the masses

GND

12V

12V sense



fpgadistributed number crunching for the masses

 1. Find Power. 

 2. Find JTAG.

 3. Find clocks.

 4. Profit.

✓



fpgadistributed number crunching for the masses

 TDO

 TDI

 TCK

 TMS

 GND



fpgadistributed number crunching for the masses

 Just look it up in the datasheet:

 Locate the via

 Use some tinfoil to trace the signal!



fpgadistributed number crunching for the masses

TCK



fpgadistributed number crunching for the masses

TCK
TDO

TDI
TMS

GND

VSENSE



fpgadistributed number crunching for the masses

 1. Find Power. 

 2. Find JTAG.

 3. Find clocks.

 4. Profit.

✓
✓



fpgadistributed number crunching for the masses

 Method #1: Boundary Scan 

 Method #2: FPGAs usually have 
dedicated clock pins - check them!

www.xjtag.com

http://www.xjtag.com
http://www.xjtag.com


fpgadistributed number crunching for the masses

 1. Find Power. 

 2. Find JTAG.

 3. Find clocks.

 4. Profit.

✓

✓
✓



fpgadistributed number crunching for the masses

 ~20 Boards required.

 20 * $50 = $1k - coincidence?



fpgadistributed number crunching for the masses

Device bits/
(s*node) $/node nodes*weeks $/Key/Week

PC 28.5 500 313 ~150k

PS3 28.1 300 310 ~93k (+Hack)

GPU 29.2 300 150 ~45k

FPGA 30.9 50/3 20 1k



fpgadistributed number crunching for the masses

 Multiple pipelined DES cores all 
encrypting the same plaintext.

 Matched against multiple Patterns.

 Each core searches a keyspace segment, 
lower bits will be identical.



fpgadistributed number crunching for the masses

00 00 00 00 00 00 00 00

Plaintext

0021446688aaccee

Key Ciphertext

c3952e7e8b75b46c

d5d44ff720683d0d

4d6b4a592a0f265f

7f8b4303c59c81a0 

0022446688aaccee

0023446688aaccee

0024446688aaccee

DES #0

DES #1

DES #2

DES #3

Workunit (16 bits) Counter (40 bits)



fpgadistributed number crunching for the masses

0d3d6820f74fd4d5
06de6ff356237359
d5d44ff720683d0d 
59732356f36fde06
f2c297df08b02b2a
f921900ca9dc8ca6
2a2bb008df97c2f2
a68cdca90c9021f9

c3952e7e8b75b46c
d5d44ff720683d0d

4d6b4a592a0f265f
7f8b4303c59c81a0 

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘ ✓ ✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘



fpgadistributed number crunching for the masses

 To get a sense of the numbers:

 8 cores@200 Mhz w/ 16 patterns:

 12.8 GByte/s encrypted data matched 
against 16 Ciphertexts.

 That’s 204.8 GByte/s data to compare!



fpgadistributed number crunching for the masses

 Naive approach:

 16 patterns à 8 byte registers.

 8 x 16 compare units.

 Already 1/4th of the resources.



fpgadistributed number crunching for the masses

 “Content-Addressable Memory” (CAM) 
is what we want - supply a ciphertext, 
get a match mask.

 In Xilinx BRAMs, implemented as 
bitmasks, for example 256x64 bit.

 Looks like a waste on first sight, but...



fpgadistributed number crunching for the masses

 Using bitmasks allow for masked 
searching, or searching ASCII.

 BRAMs are “free”. There are a lot of 
them. Just use them.

 Frees up a lot of resources.



fpgadistributed number crunching for the masses

 Communication with the FPGA doesn’t 
need to be high-speed for brute-force.

 Focus on reusability, (host-)cross-
platform, simplicity.

 Xilinx offer JTAG “USER” chains.

 JTAG needed for programming, so you 
get communication for free.



fpgadistributed number crunching for the masses

 xc3sprog (http://sourceforge.net/
projects/xc3sprog/) supports a few 
different cables and a lot of Xilinx 
FPGAs.

 Python wrapper added to provide two 
features to python:

 “Program Bitstream”

 “Scan USER chain”

http://sourceforge.net/projects/xc3sprog/
http://sourceforge.net/projects/xc3sprog/
http://sourceforge.net/projects/xc3sprog/
http://sourceforge.net/projects/xc3sprog/


fpgadistributed number crunching for the masses

 Host programs FPGAs, configures 
matcher, set DES key prefixes

 Matcher stops counting up on match, 
sets status bit.

 Host polls matcher, if match is found, 
restart at key+1

 Or actually at key+1-latency.



fpgadistributed number crunching for the masses

 Server to keep track of workunits.

 Client requests a workunit, configures 
FPGA, delivers result.

 BOINC?



fpgadistributed number crunching for the masses

Let’s do a live demo!

... and wait a week.

... and skip some bits.

... and wait a week.



fpgadistributed number crunching for the masses

00 00 00 00 00 00 00 00

DES
encrypt

32 37 43 33 00 00 00 00

Key

32 37 43 33 00 xx xx xx



fpgadistributed number crunching for the masses

 Roughly 1 hit per 40 bits of keyspace, 
i.e. 1/65536 of a real search.

 Still takes about 1 hour on a high-end 
machine!

 Let’s do it here, live.



fpgadistributed number crunching for the masses

 Prototype implementation on $150 
Spartan-3A Starter Kit

 Works, but still takes a few hours.

 Let’s add some more FPGAs.



fpgadistributed number crunching for the masses

 DEMO: Dance2048 * 3



fpgadistributed number crunching for the masses

 “Crunchy” - A lightweight framework for 
easy development of distributed FPGA 
number crunching tasks.

 https://github.com/tmbinc/crunchy

https://github.com/tmbinc/crunchy
https://github.com/tmbinc/crunchy


number crunching for the masses

 The code scaled up with a single 
command line:

python build.py Dance2048 NR_CORES=6

python build.py S3AStarter NR_CORES=1



number crunching for the masses

 Board: S3AStarter, ...

 Project: descrack, ...

 for building the bitstream (HDL, Meta)

 server (workunit distribution, Python)

 for client (communication with FPGA)

 Parameters: NR_CORES, 
WORKUNIT_BITS, ...



number crunching for the masses

 Board support provides:

 Top-level HDL and constraints.

 A number of defined interfaces to the 
“project” that the project may or may 
not use, like “CLOCK”, “LEDS”, 
“UserJTAG”.

 Usually <100 lines of code.



number crunching for the masses

S3AStarter

Project

DCM

JTAG

RESET

CLK

USERJTAG



number crunching for the masses

 Project provides:

 Parameterizable HDL using defined 
interfaces to plug into the board.

 Client code to use abstracted board 
interface to talk to the FPGA.

 Server code to provide workunits 
parameters.



number crunching for the masses

Project
RESET

CLK

USERJTAG
DES
#0

DES
#1

DES
#2

DES
#3

Matcher

TDI

TDO

NR_CORES=4
NR_PATTERNS=16
WORKUNIT_BITS=38

Results
Counter
Clock
JTAG



number crunching for the masses

 (board, project, parameters) define a 
bitstream

 Server project definition includes list of 
supported boards with their 
parameters, distributes bitstreams

 Client project definition can talk to any 
project instance.



number crunching for the masses

 Prototype your brute-forcer core on a 
small FPGA!

 Run it on a big cluster.

 Or run it on a lot of devices!



number crunching for the masses

 Some consumer hardware have FPGAs. 

 Some of them can be pretty big:

 3G Femto Cells

 Dreambox DM8000 Satellite Receiver



number crunching for the masses

 Dreambox DM8000:

 Embedded Linux DVB Receiver

 Uses Xilinx Spartan 3E-500 for muxing 
between tuners and controlling CIs.

 JTAG available as GPIO.



number crunching for the masses

 1 Core per Device at max. ~100Mhz.

 But: a lot of devices out there!

 Users can donate their “free” FPGA 
power, for example in standby.



number crunching for the masses

 DEMO DM8000



number crunching for the masses

 FPGA improvements: 

 copacobana has a MUCH better DES 
core

 More communication methods

 Non-Xilinx devices



number crunching for the masses

 Client/Server improvements: 

 Subscribe to project feeds, 
automatically take part in interesting 
projects.

 Security (Anti-Cheating and bitstream 
authentication)



number crunching for the masses

 Results



number crunching for the masses

PROGRESS:
255133+57+6954 / 262144 (2.65 %)
PENDING:
[...]
RESULTS:
[...]
       276 0022446688aaccee

KEY Keyspace

56 028

9 Rate (FPGA)s->1.9h



number crunching for the masses

0d3d6820f74fd4d5 1010642f4858bbd1
06de6ff356237359 2b83b6f8295bddc9
d5d44ff720683d0d 0000000000000000
59732356f36fde06 ffffffffffffffff
f2c297df08b02b2a 764281af54fcc725
f921900ca9dc8ca6 0e5d79eb501a8e0c
2a2bb008df97c2f2 34c7a1849994274b
a68cdca90c9021f9 0a3cf4931bc484a2

 We found the non-negated key!

 C1 was all-zero and byte-reversed.

Ciphertext (Pattern) Plaintext with k



number crunching for the masses

...
0000760: 69 3c 3f 6a 30 65 66 33 33 66 65 30 6a 3f 3c 69  i<?j0ef33fe0j?<i
0000770: 03 56 55 00 5a 0f 0c 59 59 0c 0f 5a 00 55 56 03  .VU.Z..YY..Z.UV.
0000780: 66 33 30 65 3f 6a 69 3c 3c 69 6a 3f 65 30 33 66  f30e?ji<<ij?e03f
0000790: 65 30 33 66 3c 69 6a 3f 3f 6a 69 3c 66 33 30 65  e03f<ij??ji<f30e
00007a0: 00 55 56 03 59 0c 0f 5a 5a 0f 0c 59 03 56 55 00  .UV.Y..ZZ..Y.VU.
00007b0: 21 49 44 43 6f 64 65 30 00 00 5c 49 44 43 6f 64  !IDCode0..\IDCod
00007c0: 65 31 00 00 23 49 44 43 6f 64 65 32 00 00 61 74  e1..#IDCode2..at
00007d0: 65 73 74 70 69 63 00 00 62 73 65 63 5f 76 65 72  estpic..bsec_ver
00007e0: 00 00 6b 61 69 6a 79 6f 21 3f 00 00 66 4e 61 6f  ..kaijyo!?..fNao
00007f0: 6d 69 47 44 00 00 41 4b 45 59 43 4f 44 45 00 00  miGD..AKEYCODE..
0000800: 42 6b 65 79 63 6f 64 65 00 00 43 31 73 74 72 64  Bkeycode..C1strd
0000810: 66 30 00 00 44 31 73 74 72 64 66 31 00 00 21 49  f0..D1strdf1..!I
0000820: 44 43 6f 64 65 30 00 00 5c 49 44 43 6f 64 65 31  DCode0..\IDCode1
0000830: 00 00 23 49 44 43 6f 64 65 32 00 00 61 74 65 73  ..#IDCode2..ates
0000840: 74 70 69 63 00 00 62 73 65 63 5f 76 65 72 00 00  tpic..bsec_ver..
0000850: 6b 61 7a 75 68 69 73 61 00 00 66 4f 6b 61 62 65  kazuhisa..fOkabe
...



number crunching for the masses

 1. Find Power. 

 2. Find JTAG.

 3. Find clocks.

 4. Profit.

✓
✓
✓
✓



number crunching for the masses

 THANKS, and... FIND MORE KEYS.

 tmbinc@elitedvb.net

 http://debugmo.de/

 https://github.com/tmbinc/crunchy

mailto:tmbinc@elitedvb.net
mailto:tmbinc@elitedvb.net
http://debugmo.de
http://debugmo.de
https://github.com/tmbinc/crunchy
https://github.com/tmbinc/crunchy

